3.1.27 \(\int \frac {\sinh ^2(c+d x)}{a+b \text {sech}^2(c+d x)} \, dx\) [27]

Optimal. Leaf size=75 \[ -\frac {(a+2 b) x}{2 a^2}+\frac {\sqrt {b} \sqrt {a+b} \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{a^2 d}+\frac {\cosh (c+d x) \sinh (c+d x)}{2 a d} \]

[Out]

-1/2*(a+2*b)*x/a^2+1/2*cosh(d*x+c)*sinh(d*x+c)/a/d+arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))*b^(1/2)*(a+b)^(1/2
)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4217, 482, 536, 212, 214} \begin {gather*} \frac {\sqrt {b} \sqrt {a+b} \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{a^2 d}-\frac {x (a+2 b)}{2 a^2}+\frac {\sinh (c+d x) \cosh (c+d x)}{2 a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sinh[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

-1/2*((a + 2*b)*x)/a^2 + (Sqrt[b]*Sqrt[a + b]*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(a^2*d) + (Cosh[c
+ d*x]*Sinh[c + d*x])/(2*a*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 482

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 4217

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1
 + ff^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rubi steps

\begin {align*} \int \frac {\sinh ^2(c+d x)}{a+b \text {sech}^2(c+d x)} \, dx &=\frac {\text {Subst}\left (\int \frac {x^2}{\left (1-x^2\right )^2 \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\cosh (c+d x) \sinh (c+d x)}{2 a d}-\frac {\text {Subst}\left (\int \frac {a+b+b x^2}{\left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{2 a d}\\ &=\frac {\cosh (c+d x) \sinh (c+d x)}{2 a d}+\frac {(b (a+b)) \text {Subst}\left (\int \frac {1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{a^2 d}-\frac {(a+2 b) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{2 a^2 d}\\ &=-\frac {(a+2 b) x}{2 a^2}+\frac {\sqrt {b} \sqrt {a+b} \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{a^2 d}+\frac {\cosh (c+d x) \sinh (c+d x)}{2 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(236\) vs. \(2(75)=150\).
time = 0.66, size = 236, normalized size = 3.15 \begin {gather*} \frac {(a+2 b+a \cosh (2 (c+d x))) \text {sech}^2(c+d x) \left (-\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{\sqrt {b} \sqrt {a+b} d}+\frac {-4 (a+2 b) x+\frac {\left (a^2+8 a b+8 b^2\right ) \tanh ^{-1}\left (\frac {\text {sech}(d x) (\cosh (2 c)-\sinh (2 c)) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right ) (\cosh (2 c)-\sinh (2 c))}{\sqrt {a+b} d \sqrt {b (\cosh (c)-\sinh (c))^4}}+\frac {2 a \cosh (2 d x) \sinh (2 c)}{d}+\frac {2 a \cosh (2 c) \sinh (2 d x)}{d}}{a^2}\right )}{16 \left (a+b \text {sech}^2(c+d x)\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sinh[c + d*x]^2/(a + b*Sech[c + d*x]^2),x]

[Out]

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^2*(-(ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]]/(Sqrt[b]*Sqrt
[a + b]*d)) + (-4*(a + 2*b)*x + ((a^2 + 8*a*b + 8*b^2)*ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*S
inh[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(Cosh[2*c] - Sinh[2*c]))/(Sqrt[a
 + b]*d*Sqrt[b*(Cosh[c] - Sinh[c])^4]) + (2*a*Cosh[2*d*x]*Sinh[2*c])/d + (2*a*Cosh[2*c]*Sinh[2*d*x])/d)/a^2))/
(16*(a + b*Sech[c + d*x]^2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(229\) vs. \(2(63)=126\).
time = 1.90, size = 230, normalized size = 3.07

method result size
risch \(-\frac {b x}{a^{2}}-\frac {x}{2 a}+\frac {{\mathrm e}^{2 d x +2 c}}{8 a d}-\frac {{\mathrm e}^{-2 d x -2 c}}{8 a d}+\frac {\sqrt {a b +b^{2}}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-a +2 \sqrt {a b +b^{2}}-2 b}{a}\right )}{2 d \,a^{2}}-\frac {\sqrt {a b +b^{2}}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {a b +b^{2}}+2 b}{a}\right )}{2 d \,a^{2}}\) \(148\)
derivativedivides \(\frac {-\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (-2 b -a \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a^{2}}+\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (2 b +a \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{2}}-\frac {2 b \left (a +b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{a^{2}}}{d}\) \(230\)
default \(\frac {-\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (-2 b -a \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a^{2}}+\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {1}{2 a \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (2 b +a \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{2}}-\frac {2 b \left (a +b \right ) \left (-\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{a^{2}}}{d}\) \(230\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/2/a/(tanh(1/2*d*x+1/2*c)+1)^2+1/2/a/(tanh(1/2*d*x+1/2*c)+1)+1/2/a^2*(-2*b-a)*ln(tanh(1/2*d*x+1/2*c)+1)
+1/2/a/(tanh(1/2*d*x+1/2*c)-1)^2+1/2/a/(tanh(1/2*d*x+1/2*c)-1)+1/2*(2*b+a)/a^2*ln(tanh(1/2*d*x+1/2*c)-1)-2*b/a
^2*(a+b)*(-1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1
/2))+1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 352 vs. \(2 (63) = 126\).
time = 0.50, size = 352, normalized size = 4.69 \begin {gather*} -\frac {b \log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{4 \, \sqrt {{\left (a + b\right )} b} a d} - \frac {d x + c}{2 \, a d} + \frac {e^{\left (2 \, d x + 2 \, c\right )}}{8 \, a d} - \frac {e^{\left (-2 \, d x - 2 \, c\right )}}{8 \, a d} - \frac {b \log \left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, {\left (a + 2 \, b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a\right )}{4 \, a^{2} d} + \frac {b \log \left (2 \, {\left (a + 2 \, b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a e^{\left (-4 \, d x - 4 \, c\right )} + a\right )}{4 \, a^{2} d} + \frac {{\left (a b + 2 \, b^{2}\right )} \log \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{8 \, \sqrt {{\left (a + b\right )} b} a^{2} d} - \frac {{\left (a b + 2 \, b^{2}\right )} \log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{8 \, \sqrt {{\left (a + b\right )} b} a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/4*b*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b + 2*sqrt((a + b)*b
)))/(sqrt((a + b)*b)*a*d) - 1/2*(d*x + c)/(a*d) + 1/8*e^(2*d*x + 2*c)/(a*d) - 1/8*e^(-2*d*x - 2*c)/(a*d) - 1/4
*b*log(a*e^(4*d*x + 4*c) + 2*(a + 2*b)*e^(2*d*x + 2*c) + a)/(a^2*d) + 1/4*b*log(2*(a + 2*b)*e^(-2*d*x - 2*c) +
 a*e^(-4*d*x - 4*c) + a)/(a^2*d) + 1/8*(a*b + 2*b^2)*log((a*e^(2*d*x + 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*
e^(2*d*x + 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/(sqrt((a + b)*b)*a^2*d) - 1/8*(a*b + 2*b^2)*log((a*e^(-2*d*x -
 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b + 2*sqrt((a + b)*b)))/(sqrt((a + b)*b)*a^2*
d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (63) = 126\).
time = 0.44, size = 805, normalized size = 10.73 \begin {gather*} \left [-\frac {4 \, {\left (a + 2 \, b\right )} d x \cosh \left (d x + c\right )^{2} - a \cosh \left (d x + c\right )^{4} - 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} - a \sinh \left (d x + c\right )^{4} + 2 \, {\left (2 \, {\left (a + 2 \, b\right )} d x - 3 \, a \cosh \left (d x + c\right )^{2}\right )} \sinh \left (d x + c\right )^{2} - 4 \, \sqrt {a b + b^{2}} {\left (\cosh \left (d x + c\right )^{2} + 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2}\right )} \log \left (\frac {a^{2} \cosh \left (d x + c\right )^{4} + 4 \, a^{2} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a^{2} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a^{2} + 2 \, a b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, a^{2} \cosh \left (d x + c\right )^{2} + a^{2} + 2 \, a b\right )} \sinh \left (d x + c\right )^{2} + a^{2} + 8 \, a b + 8 \, b^{2} + 4 \, {\left (a^{2} \cosh \left (d x + c\right )^{3} + {\left (a^{2} + 2 \, a b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left (a \cosh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a \sinh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sqrt {a b + b^{2}}}{a \cosh \left (d x + c\right )^{4} + 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a \sinh \left (d x + c\right )^{4} + 2 \, {\left (a + 2 \, b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, a \cosh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left (a \cosh \left (d x + c\right )^{3} + {\left (a + 2 \, b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a}\right ) + 4 \, {\left (2 \, {\left (a + 2 \, b\right )} d x \cosh \left (d x + c\right ) - a \cosh \left (d x + c\right )^{3}\right )} \sinh \left (d x + c\right ) + a}{8 \, {\left (a^{2} d \cosh \left (d x + c\right )^{2} + 2 \, a^{2} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a^{2} d \sinh \left (d x + c\right )^{2}\right )}}, -\frac {4 \, {\left (a + 2 \, b\right )} d x \cosh \left (d x + c\right )^{2} - a \cosh \left (d x + c\right )^{4} - 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} - a \sinh \left (d x + c\right )^{4} + 2 \, {\left (2 \, {\left (a + 2 \, b\right )} d x - 3 \, a \cosh \left (d x + c\right )^{2}\right )} \sinh \left (d x + c\right )^{2} - 8 \, \sqrt {-a b - b^{2}} {\left (\cosh \left (d x + c\right )^{2} + 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2}\right )} \arctan \left (\frac {{\left (a \cosh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a \sinh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sqrt {-a b - b^{2}}}{2 \, {\left (a b + b^{2}\right )}}\right ) + 4 \, {\left (2 \, {\left (a + 2 \, b\right )} d x \cosh \left (d x + c\right ) - a \cosh \left (d x + c\right )^{3}\right )} \sinh \left (d x + c\right ) + a}{8 \, {\left (a^{2} d \cosh \left (d x + c\right )^{2} + 2 \, a^{2} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a^{2} d \sinh \left (d x + c\right )^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/8*(4*(a + 2*b)*d*x*cosh(d*x + c)^2 - a*cosh(d*x + c)^4 - 4*a*cosh(d*x + c)*sinh(d*x + c)^3 - a*sinh(d*x +
c)^4 + 2*(2*(a + 2*b)*d*x - 3*a*cosh(d*x + c)^2)*sinh(d*x + c)^2 - 4*sqrt(a*b + b^2)*(cosh(d*x + c)^2 + 2*cosh
(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^
2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2
+ a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x +
c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(a*b + b^2))/(a*cosh(d*x + c)^4 + 4*
a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a
 + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a)) + 4*(2*(a + 2*b)
*d*x*cosh(d*x + c) - a*cosh(d*x + c)^3)*sinh(d*x + c) + a)/(a^2*d*cosh(d*x + c)^2 + 2*a^2*d*cosh(d*x + c)*sinh
(d*x + c) + a^2*d*sinh(d*x + c)^2), -1/8*(4*(a + 2*b)*d*x*cosh(d*x + c)^2 - a*cosh(d*x + c)^4 - 4*a*cosh(d*x +
 c)*sinh(d*x + c)^3 - a*sinh(d*x + c)^4 + 2*(2*(a + 2*b)*d*x - 3*a*cosh(d*x + c)^2)*sinh(d*x + c)^2 - 8*sqrt(-
a*b - b^2)*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)*arctan(1/2*(a*cosh(d*x + c)^2 +
 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(-a*b - b^2)/(a*b + b^2)) + 4*(2*(a + 2*b)
*d*x*cosh(d*x + c) - a*cosh(d*x + c)^3)*sinh(d*x + c) + a)/(a^2*d*cosh(d*x + c)^2 + 2*a^2*d*cosh(d*x + c)*sinh
(d*x + c) + a^2*d*sinh(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sinh ^{2}{\left (c + d x \right )}}{a + b \operatorname {sech}^{2}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)**2/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(sinh(c + d*x)**2/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 132 vs. \(2 (63) = 126\).
time = 0.74, size = 132, normalized size = 1.76 \begin {gather*} -\frac {\frac {4 \, {\left (d x + c\right )} {\left (a + 2 \, b\right )}}{a^{2}} - \frac {e^{\left (2 \, d x + 2 \, c\right )}}{a} - \frac {{\left (2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} - a\right )} e^{\left (-2 \, d x - 2 \, c\right )}}{a^{2}} - \frac {8 \, {\left (a b + b^{2}\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{\sqrt {-a b - b^{2}} a^{2}}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)^2/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

-1/8*(4*(d*x + c)*(a + 2*b)/a^2 - e^(2*d*x + 2*c)/a - (2*a*e^(2*d*x + 2*c) + 4*b*e^(2*d*x + 2*c) - a)*e^(-2*d*
x - 2*c)/a^2 - 8*(a*b + b^2)*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/(sqrt(-a*b - b^2)*a^2)
)/d

________________________________________________________________________________________

Mupad [B]
time = 2.03, size = 276, normalized size = 3.68 \begin {gather*} \frac {{\mathrm {e}}^{2\,c+2\,d\,x}}{8\,a\,d}-\frac {{\mathrm {e}}^{-2\,c-2\,d\,x}}{8\,a\,d}-\frac {x\,\left (a+2\,b\right )}{2\,a^2}-\frac {\sqrt {b}\,\ln \left (2\,a\,b+a^2+a^2\,{\mathrm {e}}^{2\,c+2\,d\,x}+8\,b^2\,{\mathrm {e}}^{2\,c+2\,d\,x}-2\,a\,\sqrt {b}\,\sqrt {a+b}-8\,b^{3/2}\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\sqrt {a+b}+8\,a\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}-4\,a\,\sqrt {b}\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\sqrt {a+b}\right )\,\sqrt {a+b}}{2\,a^2\,d}+\frac {\sqrt {b}\,\ln \left (2\,a\,b+a^2+a^2\,{\mathrm {e}}^{2\,c+2\,d\,x}+8\,b^2\,{\mathrm {e}}^{2\,c+2\,d\,x}+2\,a\,\sqrt {b}\,\sqrt {a+b}+8\,b^{3/2}\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\sqrt {a+b}+8\,a\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}+4\,a\,\sqrt {b}\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\sqrt {a+b}\right )\,\sqrt {a+b}}{2\,a^2\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(c + d*x)^2/(a + b/cosh(c + d*x)^2),x)

[Out]

exp(2*c + 2*d*x)/(8*a*d) - exp(- 2*c - 2*d*x)/(8*a*d) - (x*(a + 2*b))/(2*a^2) - (b^(1/2)*log(2*a*b + a^2 + a^2
*exp(2*c + 2*d*x) + 8*b^2*exp(2*c + 2*d*x) - 2*a*b^(1/2)*(a + b)^(1/2) - 8*b^(3/2)*exp(2*c + 2*d*x)*(a + b)^(1
/2) + 8*a*b*exp(2*c + 2*d*x) - 4*a*b^(1/2)*exp(2*c + 2*d*x)*(a + b)^(1/2))*(a + b)^(1/2))/(2*a^2*d) + (b^(1/2)
*log(2*a*b + a^2 + a^2*exp(2*c + 2*d*x) + 8*b^2*exp(2*c + 2*d*x) + 2*a*b^(1/2)*(a + b)^(1/2) + 8*b^(3/2)*exp(2
*c + 2*d*x)*(a + b)^(1/2) + 8*a*b*exp(2*c + 2*d*x) + 4*a*b^(1/2)*exp(2*c + 2*d*x)*(a + b)^(1/2))*(a + b)^(1/2)
)/(2*a^2*d)

________________________________________________________________________________________